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Abstract The focus of this paper is to provide a 
fast and reliable quantification method of bamboo’s 
main chemical components. Therefore, thermogravi-
metric analysis was used to determine holocellulose 
and lignin content in different bamboo specimens. 
The influence of  nitrogen  vs.  air  atmospheres  was 
investigated on the thermal degradation behav-
ior of Phyllostachys edulis (Moso),  Bambusa vul-
garis  (BV) and Iranian Phyllostachys  (IR) bamboos. 
Due to peaks overlapping, the deconvolution process 
was carried out to resolve hidden peaks and to allow 
adequate phase quantification. Also, a set of machine 
learning (ML) algorithms was applied to predict 

the composition of the studied bamboos within the 
200–500  °C range in their TGA-DTG profiles. The 
ensembles of the ML models at R2 > 0.99 proved a 
connection between the features in thermogravimetric 
curves with two concentrations  of the main compo-
nents, which were preliminarily established by means 
of chemical extraction from the respective samples.

Keywords Bamboo · Thermogravimetric analysis · 
Machine learning · Phase quantification

Introduction

Bamboo is a multi-functional material in its multi-
ple scales with outstanding mechanical and chemical 
performance. Due to this, it has been used in diverse 
areas, such as civil engineering, construction mate-
rial, textile industry, semiconductor materiails (Pan-
doli et al. 2020), and handicrafts (Valani et al. 2020). 
Such multi-functionality is a result of a complex 
chemical and physical composition network. Its main 
constituents are holocellulose (α-cellulose + hemicel-
lulose) and lignin. In small amounts, there are also 
starch, free water, volatile extractives and waxes. 
Cellulose and lignin form a  matrix  which dictates 
the mechanical properties of each specific  bamboo 
(Youssefian and Rahbar 2015).

Its components can get  varied according to the 
bamboo species and region harvested. In addition, 
the holocellulose and lignin is  significantly variable 
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in their chemical constitution depending also on these 
two factors (Dumitriu 2004; Shen et  al. 2013a, b). 
α-Cellulose, for instance, is a macromolecule con-
taining linear polymerized glucopyranose and its 
polymerization degree can vary according to its beta 
1,4- glycosidic links. Lignin is also a macromolecule 
polymerized from alcohols of para-hydroxy cinnamic 
acid (Dumitriu 2004; Shen et al. 2013a). Due to their 
nature, both of them, when submitted to thermal-deg-
radation get  burned to char (Dumitriu 2004; Carrier 
et al. 2011; Shen et al. 2013b; Zakikhani et al. 2016; 
Ornaghi et  al. 2020). In  the TGA analysis, depend-
ing on the atmosphere used, char can be decomposed 
at temperatures above 1000 °C (inert atmosphere) or 
below 600  °C in the case of oxidative  (air) atmos-
phere (Valani et al.; Shen et al. 2013a, b; Zakikhani 
et al. 2016).

There are various bamboo species in Brazil but one 
of them which can be encountered commercially is 
the Phyllostachys edulis or Moso bamboo. The reason 
to focus more on this bamboo is its proper physical 
and mechanical characteristics which made it a suit-
able material for the construction industry as a struc-
tural element, laminates and fiber reinforced concrete 
(Chung and Wang 2018; Kadivar et  al. 2019; Wang 
et  al. 2020). In addition, as a matter of comparison, 
two other bamboo types were analyzed, Bambusa vul-
garis (BV) and Iranian Phyllostachys (IR).

The quantification of the bamboo’s main constitu-
ents is a time-consuming task. Chemical extraction 
is the principal technique used for this purpose owing 
to its reliablity and cost-effectiveness. However, it 
may take days to complete all analytical procedures 
(dos Santos Abreu et  al. 2006; Michael Buchanan 
2007). Other researchers attempt to perform quan-
tifications by means of thermogravimetric analysis 
(TGA), however, two main problems can arise: peaks 
overlapping and char formation, which leads to ques-
tionable results (Ramiah 1970; Brebu and Vasile 
2010a; Carrier et al. 2011; Cao et al. 2019).

Thus,  both, afore-mentioned   problems can be 
overcome with the help of the peaks deconvo-
lution and exposure of samples to  an oxidative 
atmosphere  (air, for instance) during the analysis. 
Therefore, in this paper, a stepwise protocol of a 
deconvolution process is developed to quantify the 
main components of bamboo. The influence of oxida-
tive (synthetic air) and inert (nitrogen) atmospheres in 
the course of thermogravimetric analysis was also 

studied to access the amount of char formation in 
each analysis. Scanning electron microscopy  (SEM) 
coupled with elemental analysis  (EDX) was applied 
to confirm the presence of char after TGA. 

Also, in the present study, thermogravimetric 
experimental results were analyzed in terms of the 
4th paradigm of knowledge, i.e. data science. This is 
an up-to-date concept which is associated with pre-
dictive modeling using available data generated dur-
ing human activity – in our case, by natural scientists 
or experimentalists (Agrawal and Choudhary 2016; 
Himanen et al. 2019; Zhou et al. 2019; Bezerra et al. 
2020; Gressling 2020). The tools of data science, in 
particular, machine learning (ML) algorithms are 
helpful to develop applications, software, application 
programming interfaces (APIs) from chemical, instru-
mental or any technical information to predict or 
identify the values (regression task) or specify types 
of the samples/materials from their properties (clas-
sification task). Herewith, we took the most specific 
regions of TGA-DTG curves for each of three bam-
boo samples to predict their composition by two main 
components: lignin and holocellulose. Such a strategy 
to isolate the mentioned regions was prompted by 
reduction of non-informative flat lapses identical for 
all three samples of bamboo. It is a necessary stage of 
data cleaning and preparation. The methods included 
unsupervised (K-Means Clustering) and supervised 
(K-Nearest Neighbors—KNN, Decision Tree, Boot-
strap Forest, XGBoost) ML methods. This ML study 
is promising for construction, biology, and materials 
science in general: using a small amount of a sample 
to perform the thermal analysis one can receive infor-
mation about a bamboo’s type and the percentage 
of its main fractions. Due to the non-linearity of the 
curves, methods like SVM (Support Vector Machine), 
Naive Bayes, or Linear Regression are impracticable 
and will result in worse values of the metrics.

With the use of these advanced techniques, decon-
volution process and machine learning, this paper 
brings a fast and reliable method to quantify main 
bamboo’s phase constituents, cellulose and lignin. It 
also paves the road in to the building of applications 
to identify different bamboo species by means  of 
thermal analysis and other properties.
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Materials and methods

Materials

Three different bamboo types Phyllostachys edulis 
(Moso bamboo), Bambusa vulgaris (BV), and Iranian 
Phyllostachys (IR) were used in the present study 
(plain bamboos). The Moso bamboo culms were pro-
vided by ‘Takê Cortinas’  (São Paulo, Brazil); the BV 
bamboo culms were obtained from PUC-Rio Univer-
sity (Rio de Janeiro, Brazil); and the IR bamboo sam-
ples were received from the Tea Research Center 
(Lahijan, Iran). All three species were cut between 3 
and 5 years of age. After cutting, the bamboo poles 
were stored vertically in a shadow for 6 months. The 
samples have been prepared from the middle part of 
the culm for all three species.

Chemical extraction methods

Chemical extraction methods and quantification of 
α-cellulose, hemicellulose, and lignin of the Moso 
bamboo followed recommendations provided in the 
reference (dos Santos Abreu et al. 2006). In the case 
of BV and IR bamboos, it was carried out according 
to standard recommendations of TAPPI.

The extracted holocellulose (α-cellulose + hemi-
cellulose) and lignin were carefully sampled in sealed 
plastic bags in order to avoid contaminations, and 
later they were characterized by means of TGA.

Thermogravimetric analysis

Thermogravimetric tests were conducted using the 
SDT Q600 equipment (TA Instruments). Plain bam-
boo samples were milled in a knife mill grinder. 
About 10 mg of sample was poured into the platinum 
pan to perform the analysis. The analysis conditions 
were as follows:  a heating rate of 10 ºC·min−1 from 
25 to 1000 ºC. under either 100 mL·min−1 of nitrogen 
or synthetic air flow. Tests were made in triplicates.

Coke quantification

For the calculation of the coke formation under nitro-
gen atmosphere, the TGA curves were subtracted 
from synthetic air curves by using OriginPro® soft-
ware version 2019b, according to Eq. 1.

where: Mcoke,i is the mass of coke formed at a given i 
temperature in nitrogen flow analysis;

MN,i is the mass loss % of bamboo at a given i tem-
perature in nitrogen flow analysis;

MSyn,i é the mass loss % of bamboo at a given i 
temperature in synthetic airflow.

Deconvolution process algorithm

In order to resolve overlapping peaks in the TGA 
analysis, a typical deconvolution process had to be 
carried out to calculate the areas related to the holo-
cellulose and lignin. Deconvolutions were undertaken 
using OriginPro® software version 2019b. The data 
range was limited from temperature above 100  °C. 
At lower temperatures, the mass loss can be related 
to water and other volatile phases, such as extrac-
tives, which are  not on the focus of the present study. 
The baseline was built using  the Straight Line built-
in option and it was kept fixed during fitting process. 
In order to reduce overfitting, a minimum number 
possible of peaks were used to model experimental 
data using the Gaussian peak function. The  maxi-
mum  number of iterations was set at 500 (tolerance 
to 1 ×  10–6).

First, deconvolution of the Moso’s extracted 
holocellulose and lignin was performed and its 
peaks parameter properties, such as the peak center, 
the peak area, and FWHM were later used as param-
eters for restrictions during the deconvolution process 
of plain bamboos’ peaks. Restrictions values were set 
with 10% of tolerated variance to each peak param-
eter property, except for the peak area. The peak area 
was allowed to vary from values ≥ 0. The fitting algo-
rithm comprised the following steps:

1. Initially, the fitting process was set to run as a 
first fitting approximation.

2. Then, fitting peaks that were crossing experimen-
tal data peaks must have their restriction limits 
reduced. First, by increasing or reducing FWHM 
by more 10%. Second, the peak area was limited 
to a minimum value that inhibits fitting peak to 
cross experimental data peak.

3. Fittings were considered acceptable when mod-
eled curve visually best described experimental 
data and at R2 > 0.90.

(1)Mcoke,i = MN,i −MSyn,i
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In the cases of R2 < 0.90 while using only the fitted 
peaks found in the extracted holocellulose and lignin 
process, an extra peak had to be inserted between 345 
and 460 °C with no restrictions, except, at non-nega-
tive area and FWHM values > 0. After that, the fitting 
process was restarted from step 1, and acceptable R2 
values were found.

Scanning electron microscopy analysis

The ashes collected after thermogravimetric analy-
sis were studied by scanning electron microscopy 
(SEM). The ashes were fixed on the equipment sup-
port by means of carbon tape without additional coat-
ing. Images were obtained with a Quanta 400 equip-
ment (FEI, Brno, Czech Republic) with secondary 
and backscattered electron detectors. It was operated 
under low vacuum and at the  voltage of 15 kV. Ele-
mental composition was determined by means of an 
Energy-Dispersive X-ray (EDS) accessory (Bruker 
Nano GmbH).

Machine learning techniques

In order to predict the composition (lignin or holo-
cellulose content, %) in each bamboo species in con-
sideration and to connect features in TGA-DTG with 
the chemical extraction data, the set of trained and 
validated models was proposed: K Nearest Neighbors 
(KNN, Euclidean distances,  Kmax = 100 neighbors for 
both phases), Decision Tree (307 splits for lignin and 
277 splits for holocellulose), Bootstrap Forest (learn-
ing rate 0.1, 100 trees, 2 terms per split, the minimal 
splits per tree—10, the minimal split size—32 at the 
fixed random seed) and XGBoost (learning rate ≤ 0.1, 
the maximal depth 8, α—1.3615, λ—1.0618 at 
391 iterations). The ensembles of the models were 
arranged through gradient boosting using sigmoid 
functions. Given the specific patterns of the thermo-
gravimetric profiles, and characteristic concentrations 
of two main components (lignin and holocellulose), 
three samples—BV, IR, Moso—can be classified by 
K-means clustering. This approach reasons further 
involvement of supervised machine learning shown 
below. The entire procedure was coded in JSL within 
a module of JMP Pro15 (SAS).

Results and discussions

In the following subsections the comparison between 
TGA analyses carried out under different gas flow 
atmosphere (inert and oxidative) is presented. Next, is 
possible to check, the chemical quantification of holo-
cellulose and lignin from different bamboos and also 
the TGA quantification by means of deconvolution 
and machine learning.

Char formation during TGA analysis 
characterization of bamboo

Figure 1 shows the TGA and DTG curves in nitrogen 
and synthetic air flow for Moso bamboo. It is also 
possible to see the difference curve between air and 
nitrogen TGA curves. The difference curve represents 
the char formation in nitrogen flow analysis.

It can be seen that the atmosphere of thermo-
gravimetric analysis  essentially affects the path 
of  bamboo’s decomposition. In the case of  the  oxi-
dative  airflow, big macromolecules in the bamboo 
constituents, such as celluloses and lignin yield 
char, whereas, in the inert atmosphere, these compo-
nents will be decomposed above 1000 °C (Brebu and 
Vasile 2010b; Carrier et al. 2011; Shen et al. 2013b, 
a; Li et  al. 2015). On the other hand, in the oxida-
tive atmosphere, char decomposes at lower tempera-
tures, which is proven by a peak at 468 °C. It is worth 

Fig. 1  TGA and DTG results in nitrogen and synthetic airflow 
of Moso. The colored area is the standard deviation
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pointing out, at 1000  °C there is less than 1% mass 
in the oxidative analysis, which can be attributed to 
inorganic ashes. While for inert atmosphere analysis 
it remained 10.2% of mass, which can be attributed to 
organic char presence plus inorganic ashes.

There are two stages of char formation: first, start-
ing from 240 up  to 380 °C and the second one   - at 
380  °C continuing over  1000  °C. In the first stage, 
char had the maximal yield at 340 °C (19% by mass) 
and it was completely decomposed at 380 °C. It can 
be related to char formed from cellulose or hemi-
cellulose pyrolysis (Cao et  al. 2019). In the second 
stage, the char starts to form at 380 °C, reaching the 
a maximum  yield at 500  °C (20.7% by mass), and 
then it starts to decrease progressively, although, at 
1000  °C  the char is  still present (10.5% by mass). 
The second stage can be attributed to the pyrolysis of 
lignin and it can  be associated with  its high molecu-
lar weight and complex structure (Cao et al. 2019).

Figure 2 and Fig. 3 present SEM images after TGA 
analysis (1000  °C residue) using syn. air or nitro-
gen gas flow and, respectively, the representative 
point EDS analysis of the structures seen in the SEM 
images. 

From Fig. 2, in the oxidative atmosphere, only sim-
ple ashes structures remained. The point EDS analy-
sis revealed the composition  represented by Mn, Ca, 
K, Cl, S, P, Si, Mg, Na, O, and C. Carbon may appear 
due to the carbon tape, used to fix the sample during 
preparation. That means that all organic compounds 
were degraded during thermogravimetric analysis and 
no char was formed.

On the other hand, Fig.  3 illustrates complex 
structures after TGA analysis in inert atmosphere 
and that confirms the char residue after 1000  °C. It 
is composed of a heterogeneous surface and apparent 
high porosity with circular voids, as can be seen in 
expanded image. From point EDS analysis it is pos-
sible to identify that the carbon peak is too height that 
overlaps the presence of the other peaks that were 
seen in oxidative analysis, therefore, confirming its 
carbonaceous composition.

Taking into account that in  the inert atmosphere 
there is char formation with these complex structures 
remaining after 1000 °C and in oxidative atmosphere 
only simple oxide ashes remains, attempts of lignin 
and cellulose quantifications will be carried out using 
synthetic air atmosphere. since it guarantees complete 

thermal degradation of these organic constituents at 
the set temperature.

Lignocellulose phases quantification of bamboo

Extraction method

Table 1 shows the subject bamboos phase quantifica-
tion by means of the extraction method. It is notice-
able that different extraction methods was executed 
for Moso bamboo, which allowed the quantifica-
tion of α-cellulose and hemicellulose. It is possible 
to see that the Moso bamboo is composed of 37.6% 
of α-cellulose and 24.6% of hemicellulose in this 
research. Holocellulose (α-cellulose + hemicellulose) 
is  present in 62.2%, 65.3% and 72.3% of the Moso, 
BV and IR mass fractions respectively. After holo-
cellulose, lignin is the second main component, its 
content takes 30.6%, 29.5% and 25.5%, for the same 
bamboos respectively.  The Extractives are present in 
smaller fractions, reaching 7.2% of the Moso, BV and 
IR mass respectively. Lastly, the amount of extrac-
tives was subtracted from that of holocellulose and 
lignin which gave respective  amounts of 67.0% and 
33.0% for Moso; 68.9% and 31.1% for BV; and 73.9% 
and 26.1%, for IR. Such a normalization was required 
because  the extractives are mostly volatile and their 
concentrations can significantly vary depending on 
storage conditions and specimens’ age. These two 
subject components served to be matter for discus-
sions about the thermogravimetric profiles.

TGA method

Figure 4 a shows TGA mean results (mean of the trip-
licate) of Moso’s extracted holocellulose and lignin. 
Regarding to the holocellulose, two sharp peaks of 
degradation can be assigned: around 320 °C and near 
475 °C. It is noticeablethat three peaks appear in the 
450 and 525 °C region, however, for each individual 
replicated curve there is only one peak at different 
temperature  maxima. Hence, the mean results curve 
only describes this non-uniform behavior of these 
peaks appearance at different temperatures. On the 
other hand, lignin degrades continuously, what two 
main wide peaks speak for  - at 300 °C and 525 °C.

The modeleld curves of the Moso’s holocellulose 
and lignin TGA experimental data are represented 
in  Fig.  4 b  and c. The  peaks deconvolutions were 
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carried out after 100  °C, because at < 100  °C,    the 
mass loss can be addressed to water and more vola-
til extractive phases which have smaller contribution 
on mass loss of the samples. It was possible to model 
holocellulose TGA curve using four peaks with a 
R2 = 0.97. The residual curve shows small differ-
ences between modeled and experimental curves. In 
the case of lignin, it was possible to describe experi-
mental results with only three peaks (R2 = 0.99). 
The residual curve also displays a non-significant 

difference between modeled and experimental pro-
files. Table  2 summarizes the peak properties of 
deconvoluted TGA curves for holocellulose (in grey) 
and lignin (in blue). Thereupon, the peak center and 
FWHM properties of holocellulose and lignin was 
used as restrictions to model plain Moso bamboo’s 
TGA curve with a variation tolerance of 10%.

Figure 5a demonstrates TGA profile of plain Moso 
bamboo. The deconvolution was also conducted after 
100  °C for the same reasons mentioned  above. The 

Fig. 2  The SEM images and the point EDS after sythetic airflow analysis of bamboo (a total of 8 points were acquired)
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Fig. 3  The SEM images 
and the point EDS after 
nitrogen flow analysis of 
bamboo (a total of 8 points 
were acquired)

Table 1  Mean values and relative standard deviation (RSD) values of lignocellulosic phases composition of bamboos

* Single-replicate experiment

Bamboo type Extractives Lignin α-Cellulose Hemicellulose Holocellulose

Moso 7.2 (5.1) 30.6 (7.7) 37.6 (3.4) 24.6 (3.8) 62.2 (3.3)
BV* 5.5 29.5 – – 65.3
IR* 2.4 25.5 – – 72.3
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first attempt to model experimental data using only 
the peaks found for holocellulose and lignin was 
undertaken. In order to improve the model’s per-
formance,   due to the lack of the peak an additional 
peak was inserted in the region of 425–475 °C with 
no restriction  and keeping the   non-negative area. 
Finally, it was possible to describe experimental 
data with eight peaks (R2 = 0.95). The residual curve 
revealed  the non-significant difference between mod-
eled and experimental data.

Table  2 shows the peak properties of the 
Moso’s  deconvoluted TGA profile  . It is 

noticeable that the last peak is a free peak added for 
better description of the experimental data. Later, the 
sum of areas was compared to the results from the 
extraction method and it was possible to assign the 
last peak to holocellulose. The sum of deconvoluted 
areas resulted in 61.7% of holocellulose and 38.3% of 
lignin. As compared to the values found in the extrac-
tion method the differences were 7.9% and 16% for 
holocellulose and lignin, respectively.

After that, by using the identical  restriction crite-
ria for the Moso bamboo, attempts to deconvolute the 
TGA curves of Bambusa vulgaris bamboo (BV) 

Fig. 4  The TGA analysis 
of extracted holocellulose 
and lignin a; Deconvoluted 
mean peaks of holocel-
lulose b and lignin c. Blue 
and red areas are standard 
deviations of experimental 
data

Table 2  The properties of 
deconvoluted holocellulose 
and lignin TGA peaks

Peak center (°C) Area (m%) FWHM (°C)

Holocellulose

318.1 60.7 27.7

374.4 28.6 255.8

479.8 9.0 9.1

495.7 1.7 4.2

Lignin
303.9 12.0 45.1

398.2 53.3 194.4

513.2 34.7 74.9
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Fig. 5  The TGA and deconvoluted DTG curves of Moso bamboo b(a); Bambusa Vulgaris, BV (b) and Iranian Phyllostachys, IR(c) 
bamboos. Blue areas are corresponding to the standard deviation of experimental data

Table 3  The  peak properties of the  deconvoluted TGA profiles of Moso, BV and IR bamboos: for holocellulose  (gray), for 
lignin (blue) related peaks and for extra peaks (white)

Moso BV IR
Peak center 

(°C)
Area 
(m%)

FWHM 
(°C)

Peak center 
(°C)

Area 
(m%)

FWHM 
(°C)

Peak center 
(°C)

Area 
(m%)

FWHM 
(°C)

321.5 26.2 24.0 322.8 16.6 27.7 329.6 4.4 27.9

344.8 20.6 230.0 360.0 20.0 175.4 336.0 35.4 150.0

438.8 0.8 10.0 445.5 9.4 10.0 445.0 4.7 8.1

468.7 4.2 4.6 458.6 4.1 4.7 457.9 0.3 3.8

287.5 17.7 40.6 290.8 30.6 50.0 279.2 33.9 49.6

400.0 18.2 175.0 400.0 11.4 90.0 410.0 9.9 47.2

461.9 2.5 67.0 440.0 1.1 67.0 461.0 1.1 67.0

461.9 9.9 19.1 345.9 6.7 20.3 451.1 10.3 40.0
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and Iranian Phyllostachys bamboo (IR) were made 
(Fig. 5b,c).

For the case of the BV bamboo, as well as for 
Moso, an extra peak was required to describe experi-
mental data, however, it was introduced at approx. 
345 °C. Another peak was suggested to be added near 
430  °C, but in order to avoid overfitting, it was not 
used. Even though the residual result was high in the 
region of 400–480 °C, the modeled curve resulted in 
a good fit (R2 = 0.92). The properties of deconvoluted 
BV bamboo peaks are summarized in Table  3. The 
sum of areas related to holocellulose, including the 
extra peak, was 56.9% and for lignin  − 43.1%.

In the case of the IR bamboo, also an extra peak at 
451 °C  was added. The final modeled curve was fit 
at R2 = 0.99. The properties of deconvoluted IR bam-
boo peaks are summarized in Table  3. The sum of 
the areas related to holocellulose (gray) together with 
the extra peak (white) was 55.1% and for lignin (blue) 
was 44.9%. Compared to the extraction method for 
the same bamboo, the differences for holocellulose 
and lignin were 34.1 and 41.9%, respectively.

There is a  remarkable  mismatch between the 
results found by TGA and extraction methods. Such 
a difference can be addressed to the distinct decom-
position paths of holocellulose or lignin in each indi-
vidual  type of bamboo. In the present study, it was 
used the same constituents  (extracted holocellulose 
and lignin) of Moso bamboo to make restrictions and 
to model BV or IR bamboos in the deconvolution pro-
cess. However, it is possible to explore and establish 
an appropriate connection between the TGA pro-
files and the concentrations of each bamboo specie’s 
extracted constituents by applying the machine learn-
ing strategy.

Machine learning techniques

Data split and stratification To optimize the classi-
fication process, the most informative (“feature”) part 
of the TGA-DTG curves was taken on oxidative (air) 
atmosphere: within 200 – 500 °C. This region com-
prises all necessary features to distinguish the output: 
either the sample type or the components concentra-
tion.

The experimental points were split into training 
(70%) and validation (30%) sections (Fig. 6) stratified 
by each phase separately. As the KPIs (key perfor-
mance indicators),  R2 (coefficient of determination), 
RMSE (the root-mean-square-error, the difference 
between the training and validation metric), AAE 
(average absolute error) were suggested to compare 
the results. Also, the analysis the over- or underfit-
ting, the difference between the training and valida-
tion metric (RMSE) was emphasized for the final 
conclusion.

Supervised machine learning research Comparing 
the KNN metrics, the better fit for lignin seems quite 
clear, its lowest RMSE at K = 1 is twice less than for 
holocellulose (K = 2). Moreover, from the whole range 
of the neighbors’ distances (the maximal distance 
0.173), 97% of neighbors are located within 0.015, 
whereas 98% for holocellulose occupies a higher dis-
tance range – up to 0.03 for holocellulose (the maxi-
mal distance 0.192) – Fig. 7, Fig.S1.

The actual by predicted plots favor the lower 
RMSE for lignin, which is reflected in less dis-
persed points for each set concentration (Figs.  8,9). 
Although, correctly predicted values as for lignin 
and holocellulose have not less than 98% of the 
population – the respective metrics are the follow-
ing: R2 = 0.9892, RMSE = 0.2277 and R2 = 0.9879, 

Fig. 6  The mosaic plot 
of training/validation 
split stratified by lignin 
or holocellulose phase for 
three thermogravimetric 
parameters (derived weight, 
weight, temperature)
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RMSE = 0.4645. Hence, KNN demonstrates quite 
strong predictive power for lignin and holocellulose. 
This is due to easily distinguishable positions of the 
key experimental points on TGA-DTG. Thus, plotting 
fragments or a group of points in different positions 
after thermogravimetric studies under identical condi-
tions, the algorithm allows effectively “recognize” the 
composition by these two natural components.

Decision Tree and Bootstrap Forest continue with 
lower RMSEs for lignin rather than for holocellulose 
despite equally good fits for both models – it is nor-
mal because of higher concentration range of holo-
cellulose. Decision Tree has got different numbers 
of splits for lignin and holocellulose: 307 and 277, 
respectively (Fig. 10). The main drawback, quite vis-
ible from the metrics is the huge difference between 
RMSEs in validation and training sets (Figure S2, 
Fig. 11). This may serve as a criterion to set aside this 
model due to a high risk of overfitting.

Bootstrap Forest exhibits less intensive main pat-
terns, which are compensated, however, by errone-
ous values at lower densities, than for Decision Tree. 
Both Decision Tree and Bootstrap Forest take weight, 
derived weight, and temperature at almost equal 

proportions which means, in turn, equal power of 
each variable’s contribution to the models in the con-
text of both bamboo phases (Tables S1-4).  R2 does 
not vary after the number of trees = 20 for lignin or 
holocellulose (Fig. 12) and, like in the case of Deci-
sion Tree, the values of standard deviations for holo-
cellulose are larger than for lignin (Fig. 13). Also, as 
consisted with the distribution histograms for Boot-
strap Forest, the main modes are more spread than for 
Decision Tree and, hence, the model’s exactness may 
suffer, which will be a subject of discussions in a few 
paragraphs below (Figure S3).

XGBoost has turned out to be more effective than 
Decision Tree or Bootstrap Forest – its RMSEs for 
both bamboo phases are correspondingly lower after 

Fig. 7  KNN model selection charts for lignin a and holocel-
lulose b 

Fig. 8  The neighbors distances distributions for lignin a and 
holocellulose
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hundreds of iterations (Fig. 14). As opposed to lignin, 
holocellulose has a larger deviation in the predicted 
values, however, RMSE in XGBoost is less than in 

Decision Tree for both phases (Figure S4, Fig.  15) 
– 0.2549 and 0.5380, respectively. The contribu-
tion of weight is 1.6 times higher than another two 

Fig. 9  The actual by KNN-
predicted plots for lignin 
and holocellulose

Fig. 10  The split history of 
Decision Tree for lignin a 
and holocellulose b. Blue – 
training, red – validation
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Fig. 11  The actual by 
Decision Tree-predicted 
plots for lignin and holocel-
lulose

Fig. 12  Progress of R2 with 
bootstrapping of the trees 
for lignin a and holocel-
lulose b 
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parameters (temperature and derived weight) – Tables 
S5, S6. Thus, boosting itself may be a solution to 
keep the balance between the overfitting and exact-
ness of the model. This is why, we undertook ensem-
ble with a gradient boosting in a neural network from 
developed single models.

Ensemble of XGBoost and Bootstrap Forest 
– boosted single-layered Neural Network (50-times 

boosted of single (for lignin) and three (for holocel-
lulose) sigmoid (hyperbolic tangent) functions, the 
learning rate = 0.09, the square penalty method at a 
single tour). Another difference lies in the involved 
models: XGBoost and Bootstrap Forest – for lignin; 
XGBoost, KNN, Decision Tree, and Bootstrap Forest 
– for holocellulose (Figs. 16, 17).

Fig. 13  The actual by 
Bootstrap Forest-predicted 
plots for lignin and holocel-
lulose
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As a result, the metrics of the boosted ensembles 
have essentially improved and their lower spread of 
values (points) is evidenced on the actual by predicted 
plots for both phases: the standard deviations for the 
main modes are reduced more than in single models 
(Figure S5, S6). Summarized metrics—R2, RMSE, 
and AAE – for lignin and holocellulose in two charts 
are shown in Table  4 and Table  5. The ensembles 
possess a complex structure and may cause difficul-
ties in the interpretation, but in such a delicate case of 
the natural object like bamboo, enhanced complexity 
can be justified due to deviative compositions from 
species to species. For now, the selected ensemble is 
preferable and must be tested in the future with new 
samples to refine the predictive performance.

Another step deals with the selection of a model 
from the over-/underfit point of view. This aspect 
is critical especially for new data and if, by way of 
example, a model tends to overfit the existing data (to 
consider non-significant errors as true experimental 
points), it may incorrectly “recognize” new points, 
giving a worse regression fit. Over-/underfitting 
has been estimated by a simple absolute difference 
between the RMSEs in validation and training sets 
– this is typical practice to select the most appropriate 
model undertaken in data science (Fig. 18). Bootstrap 

Forest, despite the lowest metrics, tends to the least 
overfitting, whereas Decision Tree is the most over-
fitting model. Neural Network as a boosted ensemble 
of the models is proposed to be the optimal option 
due to equilibrated low overfitting and the top pre-
diction performance. Interestingly, the prediction for 
lignin is less overfitted than for holocellulose except 
by Bootstrap Forest. Thus, the boosted ensemble for 
both phases can be recommended for deploying and 
further testing with new data (bamboo samples) to 
predict the composition by two main components. 
In future studies, we intend to collect more samples 
from other species and test boosted models devel-
oped in the present research. Also, proposed cluster 
model may be adjusted over the mean values. With 
this research we initiate implementation of modern 
concept to the routine analysis of the bamboo mate-
rials and, hence, it can be extended to more species. 
Clustering itself is a tool for quick classification for 
different bamboos. At the next phase of the study, it 
seems possible to recourse to multivariate analysis. It 
means, mapping of the clusters will be more precise 
if together with concentrations of lignin and holocel-
lulose some other properties are added. For instance, 
specific mechanical, chemical, spectral characteristics 
are relevant as variables: dependence of mechanical 

Fig. 14  Progress of 
RMSE with the number of 
XGBoost-iterations for a 
lignin and b holocellulose
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and thermal properties on lignin and cellulose 
was thoroughly studied in (Richmond et  al. 2021). 
Attempts to perform statistical analysis are recently 
reported to describe large body of the bamboo species 

(Biswas et  al. 2022). In (Yeh and Yang 2020) the 
lower temperatures of decomposition at higher con-
tent of hemicellulose was also claimed. Application 
of machine learning can summarize and generalize 

Fig. 15  The actual by 
XGBoost-predicted plots 
for lignin and holocellulose
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the accumulated historical data from the experi-
ments with following prediction of lignin and holo-
cellulose content. Our aim is to extend the variety of 

the species – accordingly, the subject models can be 
updated and perform at adequate metrics. 

Fig. 16  The actual pre-
dicted plot for the Ensemble 
of models to predict the 
lignin and holocellulose 
concentration
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Fig. 17  Boosted neural 
networks for the Ensemble 
of Bootstrap Forest and 
XGBoost to predict the 
lignin and holocellulose 
concentration
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Conclusions

In this paper, the quantification of bamboo main 
components, such as holocellulose and lignin was 
carried out by means of thermogravimetric analy-
sis (TGA). The influence of two types of gas atmos-
phere, nitrogen and synthetic air, was evaluated, and 
it has shown that the presence of char up to 1000 °C 
on inert gas flow. Data analysis protocol was devel-
oped to quantify bamboo main components based on 

Moso thermograms. The quantification of holocellu-
lose and lignin phases has demonstrated the satisfac-
tory agreement with conventional chemical extraction 
method for Phyllostachys edulis (Moso), Bambusa 
vulgaris and Iranian phyllostachys bamboos when 
using the deconvolution process. Machine learning 
models have indicated a connection between the fea-
tures in thermogravimetric curves with the phase con-
tent (lignin and holocellulose), which was established 
by means of chemical extraction from the respective 

Table 4  The summary of 
models performance by 
training and validation for 
lignin

Training Validation

Model R2 RMSE AAE Model R2 RMSE AAE

KNN 1.0000 0.0000 0.0000 Ensemble 0.9923 0.1925 0.0986
Ensemble 0.9971 0.1175 0.0730 KNN 0.9892 0.2277 0.0167
Decision Tree 0.9957 0.1440 0.0171 XGBoost 0.9865 0.2549 0.1414
XGBoost 0.9951 0.1530 0.0956 Decision Tree 0.9653 0.4080 0.0579
Bootstrap Forest 0.9663 0.4022 0.1907 Bootstrap Forest 0.9593 0.4419 0.2129

Table 5  The summary of 
models performance by 
training and validation for 
holocellulose

Training Validation

Model R2 RMSE AAE Model R2 RMSE AAE

Ensemble 0.9991 0.1233 0.0178 Ensemble 0.9952 0.2916 0.0488
KNN 0.9971 0.2289 0.0184 KNN 0.9879 0.4645 0.0458
XGBoost 0.9944 0.3152 0.1847 XGBoost 0.9838 0.5380 0.2929
Decision Tree 0.9911 0.3991 0.0632 Decision Tree 0.9627 0.8163 0.1368
Bootstrap Forest 0.9634 0.8084 0.3981 Bootstrap Forest 0.9626 0.8170 0.4008

Fig. 18  Thse histogram 
of the RMSE difference 
between training and vali-
dation by each model for 
lignin and holocellulose
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samples. These results of the applied machine learn-
ing methods serve to develop applications (software) 
that can be used to predict the phase composition of 
different bamboo species based on TGA results. The 
proposed ensembles based on gradient boosting can 
be deployed after additional tests with more samples 
and set in production.
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